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ii ABSTRACT

Gravity-capillary standing waves in water of arbitrary uniform depth are

considered. The classical perturbation calculation yields unbounded

coefficients for same critical values of the depth. A perturbation solution

valid at the first critical value of the depth is derived. It is found that

two solutions exist at this critical value. Numerical computations indicate

that these solutions are members of two different families of solutions.

Graphs of the results are included.
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ZOGNUICACZM AND CPIAM TZON

In recent years important progress has been achieved in the understanding

of the affect of surface tension on nonlinear free surface flow problems. Vor

example Schwartz and Vanden-Broeck (1979) constructed solutions of high

accuracy for gravity-capillary progressive waves. Their results indicate the

existence of a number of different continuous families of solutions.

in the present paper we consider gravity-capillary standing waves in

water of arbitrary uniform depth. This problem was first considered by Consu

(1962). He calculated the solution to third order as a power series expansion

in the wave amplitude. He found that some of the series coefficients are

unbounded for some critical values of the depth.

We present a perturbation solution valid at the first critical value of

the depth. We show that two solutions exist at this critical value. in

addition we use the numerical scheme derived by Vanden-Broeck and Schwartz

(1981) to compute the solution in the neighborhood of the first critical value

of the depth. We show that the two solutions obtained at the critical value

are members of two different families of solutions. Similar properties were

found by Schwartz and Vanden-broeck (1979) for gravity-capillary progressive

waves in the neighborhood of the first critical value of the capillary number.

The responsibility for the wording and views expressed in this descriptive
emmary lies with NW# and not with the author of this report.
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I *IMUODUCTIOU

The problem of gravity standing waves in water of arbitrary uniform depth
was solved to third order by Tadjbakhah and Keller (1960). Their method was

applied by Concus (1962) to solve the more general problem which includes
capillary as well as gravitational forces.

These perturbation expansions were obtained by imposing a uniqueness
condition which excludes certain fluid depths. Concus (1964) showed that the
values of the depth excluded by this condition form a denumerably infinite set
which is densely distributed over the entire positive real line. it is
therefore essentially impossible to satisfy the uniqueness condition in
practice. However the solution obtained by Tadjbakhsh and Keller (1960) is
satisfactory since it is defined for any value of the depth including thoee
excluded by the uniqueness condition. These reults are confirmed by the
numerical calculations of Vanden-3roeck and Schwart; (1931).

The use of the uniqueness condition in the general problem with surface
tension results in unbounded series coefficients for certain values of the
depth (Concus (1962))* Although these values of the depth were excluded by
the uniqueness condition, the perturbation solution is clearly not
satisfactory for values of the depth close to these critical values*

In the present paper we construct a perturbation solution valid at the
first critical value of the depth. We show that two different solutions can
exist at this critical value. These solutions are similar to the Oilton
ripplesw of the theory of gravity-capillary progressive waves (Wilton (1915),
Pierson and Fife (1961), Schwartz and Vanden-Broeck (1979), Chen and Saffuan
(1979)).

In addition we use the numerical scheme derived by Vanden-broeack and
Schwartz (1981) to compute the solution in the neighborhood of the first
critical value of the depth. We show that the two solutions obtained at the
critical value are members of two different families of solutions.

We formulate the problem in the next section. The main results obtained
by Concus (1962) are sumried in Section 3. The perturbation solution valid
at the first critical value is derived in Section 4. The numerical reults
are presented in Section 5.

Sponsored by the United States Army under Contract No. DUA29-S0-C-0041. TIs"
material is based upon work supported by the National Science Foundation under
Grant No. NC-7927062, Rod. 1.



2. PONWII XON

We consider the time-periodic two-dimemional potential flow of a fluid
bounded below by a horizontal bottom and above by a free surface. We assume
the notion to be periodic in th horizontal direction with wavelength A. We
measure lengths in units of k - A/2w.

Following Coacus (1962) we define the parameters Y and by the
relations

o2

" -- (2.1)
9,

6 - Y (2.2+
1+ Y

zere a is the surface tenion. For < 1 the capillary effects are small,
wherea for (1 - 1) 1 they predominate.

We define Cartesian coordinates such that the notion is symetric about
the vertical x - 0 and such that y - 0 morreeN"dstote n

level. Let k h deoh.hman depth, (k( + y)] I the angular
freqency kg( + Y)] - t the time and a the amplitude of th
linearized sace ve motion. Then we define a - ak and let Ck I(zt)
denote the el3a.iqt of the free surface above the mean level and
€[g(1 + Y)j k * the velocity potential.

in dimensionless variables the notion of the fluid in described by the
equations (sea Concus (1962))

-0 in 0 < x < W and -h < y C 1(xt) (2.3)

(18_ 22 -3/2

1 2 2
-C(# + # -0 on y -I(x.t) (2.)2 x y

#y M on + #x* on y 6 (x,t) , (2.5)

I#/n - 0 an x - 0, x -, y -h. (2.6)

4 - 0 on x 0, z 1 (2.7)

f n(xot)dx - 0 (2.6)
0

V#(x,y,t + 21) - V#(xty,t) * (209)

0 W 2,W

S J (xy,t)in t oos x t y 0 , (2.101
-hI 0 0

- Jb7O777
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0 T 21 12 1/2an I I +(X,Y,t) Co t Co x at dx d - Mas( h h) . (2.11)
-h 0 0

As noted by Tadjbakhah and Keller (1960) and Concus (1962) a uniue
solution does not exist for thosp values of h 1 ,jor which the frequency of the
n spatial harmonic {n[1 + 6(n - 1 )jtanh nh) is an integral multiple of
the fundamental frequency (tanh h) this yields the uniqueness condition

n +6(n 2 - _ Mtanh ab*j2fr n:23::l(.2nfl tanh h 1 2.... (.12)

3. PIRtTU !OM SOLUThION SA!T Y81YNG T UNIQUNUSS ONDZTION (2.12)

rolloving Tadjbakhsh and Keller (1960), Cocus (1962) sought a solution
as an expansion in powers of C. Thus

en) - 6"0(x,t) + C2 " (x,t) + 1 ¢3 q(x,t) + 0(¢4) (3.1)( 2

4 C#" (x,1, ) + €24l(x,y,t) + I 3e(x,,t) + 0(€4)2 (3.2)I2
u - 0  1  1 ,2 + 0(63) (3.3)

The solution of the zero ',rder solution is given by

in t oo x (3.4)

0 (wO/ainh h)oos t coo x cosh(y + h) (3.5)

W tanh h (3.6)
0

This solution i made unique by imposing the condition (2.12)
Concus (1962) derived the following expressions for the first and second

order solutions

2 + -2 -2-3-

8i 1773-r -' 4 co ts 2x~ (3.7)
I - 36W0

1 "0 +io"o; - (o + 0;3 )in 2t

-3 -7
- 0 24 -o3 (1 + 2) 1/16(1 - 36HW)oh 2h)

sin 2t coo 2zx coa 2(y + h) (3.8)
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1 -0 (3.9)

13y
2 - b11in tco xl b13  in 2t cos 3x

+ b sin 3t cos x + b sin 3t cos 3x (3.10)

31 33

2
* 2 + 13 coo t cos 3x cosh 3(y + h)

+ 3 coo 3t coo x cosh(y+h) + 0 3oo 3t cos 3x coh 3(yh) (3.11)
31 33

5 z 2 23)-3 7
1-240 0 3(1+96 "a 3(089 276~ 9(1+56+48 )

* -Lr@0 0 (3.12)
(1 + 36)(1 - 3604

where S is an arbitrary constant. The constants bi and 0 * are
defined ly the relations (35) and (36) given by Concus 1962).

For 8 - 0 the solution (3.4)-(3.12) reduces to the solution given by
TadJbakhsh and Keller (1960). It can easily be checked that all the terms are
bounded for any value of h if 8 - 0. Thus Tadjbakhsh and Keller's solution
is a satisfactory third order solution for any value of h.

For 8 * 0, some of the terms appearing in 2P lI and b3 3  are
unbounded at the critical values of depth defined by the relations

1 -3 - 0 (3.13)
0

-4)

1-6(1 + 3*) m 0 (3.14)

These critical values correspond respectively to n - j - 2 and n - j " 3
in (2.12).

In the next section we derive a perturbation solution valid at the first
critical value of the depth, i.e. at the value of the depth defined by (3.13).

4. PBtAMMTION BOZW8IO AT TH FIMT CRITIChL VAWU OF TIM D3iTE

We seek a perturbation solution of the form (3.1)-(3.3) valid when (3.13)
is satisfied. We substitute the expansion (3.1)-(3,3) into the *WAs of
equations (2,3)-(2.11) and collect all term of like powers of a. The terms
with 9 to the first power in (2.4) and (2.5) are given by

(1 - 8)0 - li 0 on y- (4.1)

0 0 A- a 0qt O on y - 0 (4.3)

Uqji (2.3) and (2.6)-(2.11) remain unchanged in form as equations for
and a

.4.



2'he teomsof order 92in (2*4)o (2.5) and(2.11) abegivenmby

(I - )II6~ al I+"Z FOan Y 0 (4.3)

-S nt -Q on Yin0 (4.4)

fI f *oosatmesxdft dxdyO0 (4.5)
-h 0 0

Here 1P n are defined by

ro0  .11 ( 0 )2 + (0 )2 I g - S ~(4.6)
2 x y ty I

a=10 0 0 00 0 47
0 -x~z- #; + 1 %~

3qatiIqns (2.3) and (2.6)-(2.10) remin of the eamn fo=. aM equationS in
#, and a .
te soiutdln of the sero, order problem dsfined by (2.3), (4.1), (4.2) and

(2*6)-(2.11) is

TI 0 in toox + A oo2too 2X (4.0)

0 0 -jo t Cosn x osh(y+h) - W 0j in 2t c05 2x cash 2(y~h) (4.9)

52 itanh h (4.10)

oewe A is an arbitrary constant. Thus the solution of the sero, order
solution is not unique when (3.13) is satisfied.

Difforeltiating (4.*3) with respect to t and substituting VI from
(4.4) and 11xtfrom (4.4), after differentiating twice with resIIat to X.
we obtain

-41 + (I - )#4 : 0u o on y -0 (4.11)

zere o R i defined by

0 0 0 - 0(*2
H1 0 1 M(-) -60r (41

separation of variables yields for the solution of (2.3) subject to

*(xY,t) - &(t)cos nx moh n(y + h) (.3

n-0m
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SbIstituting (4.13) into (4.11) we obtain

-006h -I, A(t) + [(1 - Oin + On3J]inh nh £ Ct)

2v
f Hoom nx ft (4.14)
0

Iere ja-i for n > 0 and 1 - 2 for n - 0. Using (4.6)-(4.10) we an
rewrit (4.14) in the form

21 3 1( 3 2 3

%(t) - ' (30 + )sin 2t - 2 ( otanh 2h + 36)sin 4t (4.15)

A1+2oo (4.16

2 0 h A2(12 h 48)€Bnh h A, 3 + 3
0 o h A1 ( 4 (4 3 +0c3n12  2 A4(t)

+ a3 0-+2 " - + -cotanh 2ho i (4.17)

* 2 ooe h 3h £(t) + 3 6)sinh h A (t)
0 3

(I + [(4 + N -68cotanh 2h-( 4n - ,(4.u)

JM~io 2w-o n 3t 12an +z~ (33)an 2h + (3.2) 6.2 n - 212 (4.16) S

4 0

micosh 3h A;(t) + (4 + 60)sinh 3h A (t)

Amoco to 2 2

-4-

Mi 4C2 + 086)ootanh 2h +26 (3ta+ 2 2 61 (4.19)

* 60oo h A; (t) ( + 60ii en 4h %(t)aiab£(t

for n a S100 (4.20)

Prom 2.9) and (4.13) it follows that , most be periodic in t with
period 2W for n )1 and from (3.13)!nd 14.20) that A - 0 for n )0 .
2be periodicity of A, requires the coefficient of 00e ta is (4,*16) to be
equa to sero. ft"a



A 1 3 0 4-1~ 4W catanh 2h) (4.21)

If vs sot A - 0 in (4015)-(4.21) we recover the system of equations
derived by Concus (1962) for the first order solution. in particular the
solution of (4.17) in then given by

3100 - 2W 0
3 -_ (I1+ 2)4-

A2  Or4 sin 2t (4.22)
16(1 - 38 a4 )cosh 2h

This solution is unbounded since (3.13) is assumed to be satisfied. Thereforet we do not set A - 0 in (4.15).
we shall determine the constant A in such a way that the solution of

(4.17) is boun~d. The appropriate compatability condition is obtained by
multiplying (4.17) by sin 2t, integrating with respect to t from 0 to
2T, applying integration by parts twice to the term containing AOCt) and

using (3.13). Thum we find that the coefficient of sin 2t in the right hand
side of (4.17) must he equal to zero. This yields the relation

3-1
3(U 0 -(1 + 28)U 0

AwlU - (4.22)
8+246 + 160 0 cotanh 2h

Substituting (4.21) into (4.22) we obtain

-ce (1+ 26)e~1 1
JL-t2 3 --1 )(4.23)

(I - 38 + 2Mw0 cotanh 2h] (300 - too- 4N cotanh 2h)

The remaining part of the calculation follows closely the work of
Tadjbakhsh and Keller (1960) and Concus (1962). Integrating (4.15)-(4.19) we

obtain%+U 3 si~

~2(3 0 coah + U0)sin +~ (.4
AO 06 0

2 2

-7-
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A3 - A0 coo t(4 + 486)cotanh 2h

2 2 2 1

(3 + 24)02 - 3m][(12 + 208)sinh 3h - Wcosh 3h]

- A0 coo 3t[(12 + 486)cotanh 2h
0

4.(3+2 -)2 - 2 2 -1+ 0 - 246)w- 21(d] 1( 1 2 + 208)oinh 3h - 36 cosh 3h -  (4.27

A4 - A2 WoSin 4t[(2 + 306)cotanh 2h + 2w cotanh22h - 6(0]1

((4 + 606)sinh 4h - 16w 0cosh 4h] (4.28

Here a , 0 and a2 are constants to be determined.
SuLtiguting (4.13) into (4.3) we obtain

(1-) - n - F0 - W0  I AnMc°" nx cosh nh (4.29)
xxn-0 n'

where F0 and An(t) are defined by (4.6) and (4.24)-(4.28). The function
T1 is therefore defined as the solution of (4.29) subject to (2.7).

The constant Q in (4.24) is evaluated by integrating (4.29) with
respect to x between 0 and w and using (2.7) and (2.8). Thus we find

2

a W -- 1 + (1 - cotanh22h) (4.30)
0 8 0 a0 2

This completes the determination of the first order solution. It still
contains an arbitrary constant 0 . This constant would be determined at
second order in a way similar to he way A was determined at first order.
However we shall not do this in this paper.

Equation (4.23) implies the existence of two solutions when (3.13) is
satisfied. Relations (3.3) and (4.21) show that one solution is characterized
by a frequency larger than the zero-order frequency and the other solution by
a frequency smaller. The wave profiles given by these two possibilities are
illustrated in Figure 1. These solutions are very similar to the "Wilton
ripples" of the theory of gravity capillary progressive waves (Wilton (1915),
Pierson and Fife (1961), Vanden-Droeck and Schwartz (1979), Chen and Saffman
(1979)).

In the next section we show that these two solutions are members of two
different families of solution.

5. NUMERICAL RESULTS

Concus (1962) solution is satisfactory for values of the depth far enough
away from the critical values (3.13) and (3.14). The solutions derived in
Section 4 are correct at the critical value (3.13). Perturbation solutions
valid for values of the depth near but not equal to the critical value (3.13)

-8-
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tcould be obtained by using the PoL.K. method. An example of such a
perturbation calculation can be found in Pierson and Fife (1961).

In the present work, we compute numerical solutions uniformly valid near
the first critical value of the depth.

Vanden-Broeck and Schwartz (1981) derived a numerical scheme bo compute
pure gravity standing waves. Their numerical procedure is generalized to
include the effect of surface tension by replacing their equation (2) by the
equation (2.4). The numerical procedure then follows closely the method
outlined in Section III of their paper.

Numerical values of w as a function of 36w for C - 0.005 and0
h - 3 are shown in Figure 2. These values were obtained with V - 4 in the
equations (15) and (16) given by Vanden-Broeck and Schwartz (1981). Concus'
perturbation solution for w is represented by the broken line in Figure 2.
It is defiled by (3.3), (3.6), (3.9) and (3.12). This solution is unbounded
when 36 0  - 1. The two crosses in Figure 2 correspond to the perturbation
solution of Section 4. They are defined by (3.3), (3.6), (4.22) and (4.23).
These two solutions are in fair agreement with the numerical values.

The numerical results of Figure 2 and similar results obtained for
different values of the depth indicate that the solutions derived in Section 4
are members of two different families of solutions One family of solutions
agrees with Concus perturbation solution for 38w < I as _ 0 and the
other family agrees with Concus perturbation solution for 36004 > 1. Similar

properties were found by Schwartz and Vanden-Broeck (1979) for gravity-
capillary progressive waves in the neighborhood of the first critical value of
the capillary number.
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